Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.

Identifieur interne : 000541 ( Main/Exploration ); précédent : 000540; suivant : 000542

Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.

Auteurs : Letitia M. Da Ros [Canada] ; Shawn D. Mansfield [Canada]

Source :

RBID : pubmed:31325405

Descripteurs français

English descriptors

Abstract

Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast-growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba × Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low-affinity potato phosphate transporter (35S::StPht1-1) were generated using Agrobacterium-mediated transformation. For both species, the highest expressing 35S::StPht1-1 lines were grown alongside wild-type plants and subjected to increasing phosphate applications. StPht1-1 expression in A. thaliana led to a reduction in biomass when grown under high-phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1-1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%-37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.

DOI: 10.1111/pbi.13212
PubMed: 31325405
PubMed Central: PMC6953190


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.</title>
<author>
<name sortKey="Da Ros, Letitia M" sort="Da Ros, Letitia M" uniqKey="Da Ros L" first="Letitia M" last="Da Ros">Letitia M. Da Ros</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31325405</idno>
<idno type="pmid">31325405</idno>
<idno type="doi">10.1111/pbi.13212</idno>
<idno type="pmc">PMC6953190</idno>
<idno type="wicri:Area/Main/Corpus">000783</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000783</idno>
<idno type="wicri:Area/Main/Curation">000783</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000783</idno>
<idno type="wicri:Area/Main/Exploration">000783</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.</title>
<author>
<name sortKey="Da Ros, Letitia M" sort="Da Ros, Letitia M" uniqKey="Da Ros L" first="Letitia M" last="Da Ros">Letitia M. Da Ros</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biotechnology journal</title>
<idno type="eISSN">1467-7652</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Biotechnology (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Biotechnologie (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Phosphore (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Phosphore</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biotechnology</term>
<term>Ecosystem</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotechnologie</term>
<term>Végétaux génétiquement modifiés</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast-growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba × Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low-affinity potato phosphate transporter (35S::StPht1-1) were generated using Agrobacterium-mediated transformation. For both species, the highest expressing 35S::StPht1-1 lines were grown alongside wild-type plants and subjected to increasing phosphate applications. StPht1-1 expression in A. thaliana led to a reduction in biomass when grown under high-phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1-1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%-37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31325405</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1467-7652</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Plant biotechnology journal</Title>
<ISOAbbreviation>Plant Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.</ArticleTitle>
<Pagination>
<MedlinePgn>470-478</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pbi.13212</ELocationID>
<Abstract>
<AbstractText>Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast-growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba × Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low-affinity potato phosphate transporter (35S::StPht1-1) were generated using Agrobacterium-mediated transformation. For both species, the highest expressing 35S::StPht1-1 lines were grown alongside wild-type plants and subjected to increasing phosphate applications. StPht1-1 expression in A. thaliana led to a reduction in biomass when grown under high-phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1-1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%-37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and Association of Applied Biologists and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Da Ros</LastName>
<ForeName>Letitia M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
<Identifier Source="ORCID">0000-0002-0175-554X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biotechnol J</MedlineTA>
<NlmUniqueID>101201889</NlmUniqueID>
<ISSNLinking>1467-7644</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="Y">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="Y">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="Y">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arabidopsis </Keyword>
<Keyword MajorTopicYN="Y">PHT1 family</Keyword>
<Keyword MajorTopicYN="Y">hybrid poplar</Keyword>
<Keyword MajorTopicYN="Y">nutrient resorption</Keyword>
<Keyword MajorTopicYN="Y">nutrient uptake</Keyword>
<Keyword MajorTopicYN="Y">phosphorus</Keyword>
<Keyword MajorTopicYN="Y">phytoremediation</Keyword>
<Keyword MajorTopicYN="Y">senescence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31325405</ArticleId>
<ArticleId IdType="doi">10.1111/pbi.13212</ArticleId>
<ArticleId IdType="pmc">PMC6953190</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 30;2:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jul;195(2):306-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22691045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1511-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2006 Jan;4(1):87-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):842-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2006 May 1;360(1-3):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Apr;89(4):1331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;479:17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Mar;111(3):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Jan;180(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Dec;169(4):2822-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26424157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 May;106(7):1234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1024-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2015;49:269-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26421509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11254-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1149-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):629-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Pollut Bull. 2016 Jan 30;102(2):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26652144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2015 Dec 16;4(4):773-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Mar;9(3):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 08;2(8):e718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Mar 31;7:11095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27029856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26554016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Da Ros, Letitia M" sort="Da Ros, Letitia M" uniqKey="Da Ros L" first="Letitia M" last="Da Ros">Letitia M. Da Ros</name>
</region>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000541 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000541 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31325405
   |texte=   Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31325405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020